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An empirical torque relation for supercritical flow 
between rotating cylinders 

By R. J. DONNELLY AND N. J. SIMON 
Institute for the Study of Metals and Department of Physics, 

The University of Chicago, Chicago, Illinois 

(Received I6 July 1959) 

An empirical relationship for the torque transmitted by fluid friction to an outer 
cylinder as a function of the angular velocity of the inner cylinder has been 
obtained by analysis of experimental data published by Wendt, Taylor and 
Donnelly. With one exception it is found that the torque Q! has the functional 

where Ql is the angular velocity of the inner cylinder and a and b are constants 
determined from the data. The formula applies to a range of values of Ql above 
the onset of instability extending to about 10 times the critical angular velocity. 
The experiments also show that the finite amplitude analysis recently advanced 
by Stuart gives the correct variation of torque over a short range above the 
critical speed. At speeds well beyond critical it is found that G varies approxi- 
mately as and that the variation of torque with gap width can be expressed 
as a simple power law with exponent about 0.31. In  an appendix Dr G .  K. 
Batchelor shows that these latter relations are consistent with the supposition 
that the flow is steady and consists of inviscid cores surrounded by boundary 
layers. 

1. Introduction 
The study of the flow of a viscous liquid between rotating cylinders has been 

a very important and fruitful area of investigation in fluid mechanics. Linear 
stability theory has had its greatest success in the prediction of the onset of 
instability in this geometry. It is natural, therefore, to try to obtain a description 
of the unstable flow as a means of studying the transition to turbulence. 

Experimentally, two techniques commonly used are the observation of dye 
traces in the fluid and the measurement of the torque transmitted to one cylinder 
as a function of the angular velocity of the other. The first of these is well suited 
to the observation of flow patterns up to the onset of instability, but is of less 
value as the motions of the fluid become more rapid and complicated. Suspen- 
sions of fine particles such as aluminium pigment (cf. Schultz-Grunow & Hein 
1956) overcome some of the difficulties. The torque method, while applied so far 
only to the case where one cylinder is a t  rest, has the advantage that the results 
can be compared quantitatively with theory. 

Recently Stuart (1958) has advanced an analysis which enabled him to calcu- 
late the relationship between the torque on the outer cylinder and the angular 

form G = a R i l  + bR:’3s, 

._ _.-.______ 
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velocity of the inner cylinder, if the two cylinders have nearly equal radii. He 
has compared his results with measurements by Taylor (1936). Since increasing 
attention is being given to finite amplitude problems, we have analyzed all the 
available published torque measurements of this kind in order to provide a basis 
for comparison with theory. The results may also provide some guide as to the 
selection of suitable assumptions for calculations. 

2. Theoretical relations 

function of the rate of rotation of the inner cylinder Ql is 
When the flow is laminar the torque G transmitted to the outer cylinder as a 

Here r] is the viscosity of the fluid, Rl and R2 are the radii of the cylinders (R, > Rl) 
and h is the length of the outer cylinder. Equation (1) is exact and forms the 
basis for the absolute determination of viscosity. At speeds near the onset of 
instability, small deviations from (1)  possibly due to the finite length of the 
cylinders or incorrect alignment may be observed (Donnelly 1958). 

The validity of (1) is limited by the onset of instability in the laminar flow with 
formation of vortices as described first by Taylor (1923). The value of $2, at which 
instability begins, which we shall call Q,, is calculated from the critical Taylor 
number. For the case of a ‘narrow gap ’ the Taylor number (Chandrasekhar 1954) 
is defined as 

where d = R 2 - 4 ,  (3) 

yo = Q(RI +R2), (4) 

(5) 

v ( = q / p )  is the kinematic viscosity of the liquid and p is the density. The critical 
Taylor number here is T, = 3.390 x lo3. 

It should be emphasized that in all these formulae we assume that the outer 
cylinder is at rest. Another approximation, used by Stuart in the calculations 
quoted below, is 

T = R1d3(Qtl /~)2,  (6) 

T, = 1.708 x lo3. (7) 

I n  the limit d + 0 the expressions (2) and (6 )  are identical (except for a factor 2) 
and the values of Qc calculated from the critical numbers are very close. 

When the gap between cylinders is finite a different analysis of the stability 
problem is required (Chandrasekhar 1958). Numerical calculations have been 
given only for the case of Rl/R2 = 8. Here the appropriate Taylor number is 

and T, = 3.310 x 104. (9) 
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A calculation of the torque for values of R beyond R, has been made by Stuart 
(1958) on the basis of a finite amplitude theory. His result may be written 

T and T, are given in (6) and (7) and 9 is a constant which follows from the 
formulae given on p. 18 of Stuart’s paper. In  the notation of that paper 

For purposes of comparison with experiment we may rewrite (10) and (1  1 )  in 

G = a!2i1+bR, ( 0 1  > Re), (13) 

where u = - (27rR1hyr,v2) ( 9 % ) / d 4  (14) 

and b = (2nR2,h7r0) ( 1 + . 9 ) / d .  (15) 

the form 

As suggested by ( I l ) ,  Stuart’s analysis is valid for the ‘narrow gap’ geometry and 
is not expected to hold for values of T much above q. 

From dimensional considerations one can see that the general expression for 
the torque must be of the form 

GlPhQ2,Rkf (R,  d/R,) (16) 

R = SZIR,d/v. (17) 

provided only the inner cylinder rotates. Here the Reynolds number is defined as 

Dr G. K. Batchelor shows in an appendix to this paper that a prediction for the 
form of the function f can be made for speeds well above critical using the 
‘inviscid-core-and-boundary-layer ’ model of the flow (Batchelor 1956). The 
result of such an argument leads to 

GlphRtRf cc R-4(d/Rl)f. (18) 

In  $53-5 we shall discuss the variation of torque with angular velocity. In  $6 
we shall consider the evidence for the variation of torque with gap width at high 
speeds. 

3. Reduction of the data 
Torque measurements of the type we are discussing have been reported by 

Wendt (1933), Taylor (1936) and Donnelly (1958). Since the first two authors did 
not publish tables of measurements, we have photographed and enlarged the 
graphs and taken the data from them with calipers. Due to mechanical limitations 
of the apparatus several fluids must be used to determine a complete (G,  !2,)-curve. 
Dynamical similarity requires that for any given pair of radii G/pR: must be a 
function of Q J v .  It is customary to calculate these quantities (or equivalent 
dimensionless parameters) for each fluid and combine them on a single curve. 

26-2 
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On such a graph the laminar flow line starts at the upper left and extends to the 
lower right. The data leave this line at the critical speed (see figure 1). 

For theoretical purposes the different fluids are of little interest, so that the 
empirical relations below have been quoted for the fluid of greatest viscosity. 
From the discussion above we see that if two fluids are measured at the same 
value of Q1/v in the same apparatus, the same value of G/pQ; is obtained. We can 
then convert the torque data from liquid 2 to the equivalent for liquid 1 by the 
relation 

PQ log - 
2 v  

FIGURE 1. (a )  After Taylor (1936, Fig. 2). R, = 4*05cm, Rl = 3.94cm, v = 0.131, 
p = 1-171. The dashed line corresponds to the calculated value of a,. The solid line 
corresponds to G = -3.71 x 1O8Cli '+ 1-12 x 106R,, calculated from Stuart's formula. 
( b )  Data BB in (a). The solid line corresponds to G = - 1.21 x 108 a;'+ 1.69 x lo4 Q:", 
fitted empirically. 
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The notation and constants of the experiments are listed below. 

(a)  Measurements of Taylor 

G = measured torque in g om2 sec-2 ; 
p = density of fluid in g/cm3 = 1.171 g/cm3; 
v = 0-131 cm2/sec; 
h = 84.4cm. 

405 

Taylor made measurements with R, = 4-05cm and inner cylinders of the 

R, = 3.94 (figure l), 3-89 (figure 2 ) ,  3.83, 3-74, 3-68, 3.59, 3-45 and 3.20cm. 

following sizes : 

FIGURE 2. After Taylor (1936, Fig. 3). R, = 3.89cm, R, = 4*05cm, v = 0-131, 
p = 1.171. The curve corresponds t o  c f  = - 4.41 x lo7 CIT1-t 1.28 x lo4 Clkss. 

(b)  Measurements of Wendt 
R, = 14.70em; 
R, = 13-75 cm (figure 3), 12.50 cm (figure 4), 10.00 cm (figure 5); 

As Wendt did not list the viscosity of his liquids, which were pure water and 

A = ri/+pR22,R: = G/nhpRlRf, where ri is the stress on the inner cylinder. 

glycerine-water solutions, we have reduced his data by defining 

T = Ti/gpv2,  U = RIRl/v, (20) 

so that A = T/U2. Thus T is proportional to the torque and U is proportional to 
R, (for conatant v, Rl and R,). 

(c) Measurements of Donnelly 

G = torque in dyne cm; 
h = 4-998 & 0.0003 cm; 
R, = 2.00023 +- 0.0001 cm; 
Rl = 1-89936 +- 0.0001 cm in figures 6 and 7, 

0.0001 cm in figures 8 and 9; = 0.99963 
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Y = 5.796 x 10-3in figures 6 and 7, 
= 1.226 x 10-1 in figures 8 and 9; 

p = 1-585 g/cm3 in figures 6 and 7, 
= 0-8404 g/cm3 in figures 8 and 9. 

The original data are presented in tables 1 and 2. Q is given as a function of the 
Reynolds number R and (19) has been used to convert all the data t o  the equi- 
valent torque for the liquid of greatest kinematic viscosity. 

G 
(dyne cm) 

13.0 
14.2 
16.3 
18.5 
21.5 
25.9 
32.2 
43.0 
64.5 
72.1 
76.2 
80.8 
82.2 
92.9 

100 
104 

R 
20.8 
22.9 
26.3 
30.0 
34.7 
41.6 
51.9 
69.2 

104 
116 
122 
129 
138 
149 
160 
167 

B 
(dyne cm) R 

108 174 
113 181 
116 183 
120 185 
124 188 
127 189 
130 190 
134 192 
140 195 
147 200 
151 204 
160 210 
173 219 
183 231 
220 254 
256 276 

G 
(dyne cm) R 

292 297 
328 318 
382 346 
547 43 1 
597 452 
633 470 
641 482 
755 549 
786 568 
924 634 

1090 710 
1330 825 
1580 920 
1858 1026 
2209 1165 

TABLE 1. Torque measurements aa a function of Reynolds number (R, = 1.9 cm, 
R, = 2-0 om, h = 5.0 cm, v = 6.796 x cma/sec, p = 1.585 g/cma, R = CI,R,d/v) 

B 

10.8 
12.1 
13.6 
15.5 
18.1 
21.8 
27.2 
36.2 
45.4 
54.5 
57.4 
60.6 
64-0 
68.3 

(dyne cm) R 
10.2 
11.4 
12.8 
14.6 
17.1 
20.5 
25.6 
34.1 
42-7 
51.1 
53-9 
56.9 
60.1 
63.9 

a 

70.4 
71.4 
72.5 
72.9 
73.6 
74.9 
76.7 
82.0 
86.5 
93-4 

(dyne em) 

106 
116 
126 
146 

R 
66.5 
66.6 
67.4 
67.8 
68-2 
69.1 
70.2 
73.0 
75.3 
78.8 
85.1 
92.7 
94.8 

107 

B 
(dyne cm) 

180 
198 
240 
283 
345 
808 

1430 
1710 
2150 
2680 
2830 
3690 
5450 
8990 

R 
121 
127 
149 
167 
192 
360 
541 
619 
722 
867 
901 

1050 
1440 
2040 

TABLE 2. Torque measurements aa a function of Reynolds number (R, = 1.0 cm, 
R, = 2.0 cm, h = 5.0 cm, v = 0.1226 cm2/sec, p = 0.8404 g/cm3, R = CIIR,d/v = QIR;/v) 
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4. The variation of torque with angular velocity 
From the discussion in 9 2 we see that the torque can be computed by (1) up to  

a known Q, . Above a,, Stuart's equation (13) can be used. A comparison of (13) 
with Taylor's data is shown in figure 1 a. From (14) and (15) and the dimensions 
in 53 we find 

The fit as T - T, -+ 0 is quite accurate, the dominant term being that in Qil. This 
is the expected range of validity of the theory. At higher speeds (13) is dominated 
by the linear term and the curve becomes parallel to the laminar flow line. A com- 
parison with data of Donnelly may be seen in figure 7. 

a = - 3.71 x lo8, b = 1-12 x 105. 

log Cn,Rl(~*-~,)/~l 

FIGURE 3. After Wendt (1933, Abb. 13). Rl = 13.76 om, R, = 14.70 cm. The c m e  
corresponds to T = - 4.46 x 104U-1+ 0-650~3"sg. 

An examination of figure 1 a shows that the data for s2 B Q, follow a straight 
line, but with a higher power of Ql. Figure 1 b shows the result of assuming that 
the torque relation has the form 

G = aCIi1+bQ2p (s2 > Q,), (21)  

with n = 1.36. The constants a and b have been determined by the points marked 
with arrows. It can be seen that (21 )  fits the data within experimental error in the 
range 1.9 < log (pQ1/2np) < 3.1, or over a factor of 16 above a,. Since T cc Q;, this 
corresponds to  agreement over a range of about 256%. The value of n in (21 )  
appears to be the same for all the experiments, as will be shown below. Therefore 
we will use the form 

for all the data. 
A second measurement by Taylor is shown in figure 2. The solid line is calcu- 

lated from (22 )  and the marked points. It holds within experimental error over 
the range 1.75 < 10gpQ1/27rp < 2.5, or up to values of Q near 6Qc. The deviation 
at log (pQ1/27rp) = 3.0 amounts to 20 %. 

Q = aQ,1+bQ!'36 (al > Q,) (22 )  
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The data of Wendt are shown in figures 3-5. As explained in 9 3 we have used 
T and U instead of G and Ql in (22). The solid line represents the data in figure 3 
over the range 2-2 < log R < 3.3, or up to values of Q near 13QC. The deviation 
at log R = 4.0 is 35 yo from the empirical curve. 

1% [GRl(R, -R,)lvI 
FIGURE 4. After Wendt (1933, Abb. 13). R, = 12*50cm, R, = 14-70cm. The curve 

corresponds to T = - 1 . 6 0 ~  103U-1+0.506U1.36. 

FIGURE 5. After Wendt (1933, Abb. 13). R, = 10.00 cm, €2, = 14.70 om. The form given 
by (22) will not represent this data accurately. The curve shown is 

T = - 15U-l+ 0*387U'.38. 

In  figure 4 the empirical curve fits over even a wider range: 2-0 < log R < 3.3, 
or up to t2 = 20Qc. The deviation at log R = 4-0 is 35% from the solid line. 

The relation (22) is less successful for Wendt's widest gap arrangement, shown 
in figure 5. The curve may be made to fit either the beginning portion or the 
straight line portion of the measurements (as shown), but not both. There is a 
possibility that (22 )  breaks down for wide gap geometries. However, a comparison 
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10' 1 o2 lo3 
4 
2nv 

FIGURE 6. After Donnelly (1958, Fig. 5). R, = 1.9 cm, R, = 2.0 cm, v = 5.796 x 10-3, 
p = 1.585. The curve corresponds to c f  = - 254 a;' + 16.0 fitas. 

400 - 

300 - 

c f  

200 - 

100 - 

/ 
/ 

filRl(R, - R1)b 
FIGURE 7. Plot of torque as a function of Reynolds number of the data in figure 6 and 
table 1. The dashed line corresponds to B = - 857 + 49.2 R,, calculated from Stuart's 
fOI'1nUl8. 
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of figures 6 and 8 which represent narrow and wide gap measurements shows that 
both follow (22). 

The measurements of Donnelly are shown in figure 6 for the case R, = 1.9 cm, 
R, = 2.0cm. The solid line is seen to fit the data fairly closely over the whole 
range, or to 7QC. The detailed nature of the observations seem to indicate repro- 
ducible features which are not followed by the curve, In  order to illustrate more 
clearly the nature of these deviations a linear plot of the originaldata near 
SZ = SZ,, taken from table 1, is shown in figure 7. One can seen that the deviations 
from the curve are less than 3% in this range. It should be noticed that Wendt’a 
data in figure 3 also show such deviations near a, in a similar case: d = 0.0667 r,, 
for figure 3 and d = 0.0513 ro for figures 6 and 7. 

FIGURE 8. After Donnelly (1958, Fig. 8). RI = 1.0 cm, R, = 2.0 cm, v = 0.1226, 
p = 0.8404. The curve shown i s  Q = - 104 LIT1 + 4.70 !2:.asr. 

We have calculated Stuart’s torque relation (13) for this case and find 

a = -857, b = 49-2. 

This is plotted as a dashed line in figure 7. The calculated curve agrees with 
experiment very closely near the critical value (which is its intended range). 
The experimental critical point agrees with that calculated from (2) and (5) or 
(6) and (7) within 1%. At Q,R,d/v = 300 the calculated torque is about 20% 
too high. 

Figure 8 shows measurements for the case R, = l.Ocm, R, = 2.0cm. Here 
(22) appears to represent the data within experimental error over the entire 
range of measurements, i.e. to 30 SZ, or 900 T,. The experimental data me given in 
table 2, and the fit near Qc is displayed on a linear scale in figure 9. The experi- 
mental value of R, agrees with the value calculated from (8) and (9) to within 4 %. 
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We have made some studies to determine the experimental limits of the 
exponent n in (21). Wendt has suggested n = 1.5 in his paper (cf. 96). We have 
tried several curves with n = 1-5 and conclude that this represents the upper 
limit of the exponent for a close representation of the data in the range of interest 
here. The value n = 1-36, which was determined from figure 8, appears to be the 
best compromise for all the measurements illustrated here, and at the same time 

0 
0 

240 

200 

160 

c f  120 

80 

40 

1 I I 
40 80 120 0 

F~amm 9. Plot of torque aa a function of Reynolds number of the data 
in figure 8 and table 2. 

Range of 
Author Figure approximation 
Taylor I b  l6xsZ, 266xT,, 

2 6 36 
Wendt 3 13 169 

4 20 400 
6 Fails - 

8 30 900 
Donnelly 6 I* 49 

~~ 

Deviation 
from data 

40 % at 40 x sZo 
20 18 
35 64 
35 100 

8 I 
0 30 

- - 

* Total range measured. Data deviates on both sides of curve: see $4.  

TABLE 3. Range of validity of the empirical relation (22) 
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to be very near the lower limit of n. We may say that the experiments give + < n < with the smaller value somewhat closer to the best compromise. The 
range of validity is summarized in table 3. 

5. Discussion 
The experiments shown in figures 1 a and 7 confirm the validity of _the torque 

relation (13) given by Stuart over its intended range: T -+ T, from above and 
d < ro. The mechanism proposed by Stuart accounts for the general variation of 
torque even though detailed numerical agreement is limited to a short rangeabove 
the critical Taylor number. The experimental evidence suggests that, a relation of 
the form given in (22), which is a modification of Stuart's calculated equation, is 
suitable over quite a wide range of conditions. The fact that the exponent 1.36 in 
(22) is found to be almost independent of the gap width suggests that an under- 
standing of the limiting cased + 0 should be relevant to the more general problem. 

Landau (1944) has advanced the interesting suggestion that instability may 
lead to a stable secondary flow, which after a certain increase in velocity would 
become unstable in turn and be replaced by a still more complex flow. This would 
continue until eventually the flow is sufficiently disordered as to be considered 
turbulent. The torque measurements do not appear to show any significant 
departure from (22) until T > 100 T, and then the points leave the empirical curve 
fairly slowly. Nothing appears to be as clearly marked as the first instability (cf. 
Donnelly 1958, Figs. 4, 7). On the other hand, the torques are averaged over 
considerable fluctuations in the range above Q,, which makes it difficult to 
measure with the precision which one can obtain below Q,. Torque measurements 
alone are not likely to be sufficient to explore the transition to turbulence. 
Schultz-Grunow and Hein have compared their finite amplitude experiments 
with Wendt's torque data. They show that at certain Reynolds numbers the 
regular cells which form after instability begins are perturbed by tangential 
waves and eventually change their spacing. These details can be correlated with 
details in the torque measurements. 

We have explored the range above SZ,  in figure 8 (which is quite regular) with 
a visual technique similar to that of Schultz-Grunow and Hein, as well as with 
ink traces. The wide gap apparatus of Donnelly & Fultz (1960) was used. Here 
we find that the cellspacing continues to be regular up to speeds corresponding 
to the limit of measurements in figure 8. The motions in the cells, however, show 
features which would have to be reported in more detail than can be done at 
present (see Donnelly & Fultz 1960). 

6. The variation of torque with gap width 
The variation of G with gap width is, of course, completely specified for 

laminar flow by (1). The dependence of G upon gap width just above SZ,  is not 
immediately clear, but for higher values of Ql appears to show significant 
regularities. For purposes of analysis we might assume, following (IS), that the 
form for G is 

From (17), (21), (22) and (23) we see that I = 2 - n  = 0.64. 

Q/phSZ;l2, R ~ C K  R-l(d/R1)m. (23) 
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If we plot log (G/phQ: Rt) as a function of log R andif the proportionality constant 
in (23)  is independent of geometry, then curves corresponding to different values 
of d/Rl  will be equally spaced for all values of R (provided we avoid the region 
near QC). A particularly striking example of this is given by the measurements 

log r~ ,R, (R , -wvi  

FIGURE 10. Reproduction of Abb. 13 of Wendt’s paper. The solid lines represent the 
empirical equations (24) given by Wendt (1933). R,-R,: 0,  4.70cm; X ,  2.20cm; 
0, 0.95 cm. 

of Wendt shown in figure 10. Wendt has drawn the straight lines according to the - 
empirical formulae 

A = 0.46 [(R2-:)R2 ‘R-0.5 (4  x 102 < R < lO4), 
R, 1 

We see that ( 2 4 a )  implies a variation of torque with Reynolds number similar to 
what we have proposed in $ 4  for Q 9 Qc (i.e. n = 1.5 in (21 ) ) .  From an inspection 
of figures 2-5 it can be seen that n = 1.5 ( I  = 0.5) is probably a better choice in 
this high speed region than n = 1-36 which was chosen for the best fit closer to  fie. 
This, of course, is the sort of limitation one expects in a purely empirical analysis. 
It is also interesting to notice from figure 10 and equation 24b that the curves are 
still approximately equally spaced after the bend in the torque curves a t  R = lo4. 

The value of m can be determined from measurements on figure 10 by measuring 
the distance between any two curves, denoted a and b. 

1% &J - log A, = m 1% w / ~ l ) b / ( ~ / ~ I ) a l .  (25 )  

We can also follow Wendt’s suggestion given in (24) that dR2/RT is the correct 
parameter and define m’ from 

log A, -log A, = m’log [(dR2/R;),/(dR2/R:)]. (26) 

Results of such calculations are shown in table 4 .  They show that for log R > 3.0 
the values of m (or m‘) are roughly constant, and that m is not very sensitive to 
a change in comparison between sets of curves with a ratio (d/RI),/(d/Rl), of 
2-55 to 6.80. 
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The measurements by Donnelly can be used again for a comparison between 
large and small gap widths: (d/Rl)b/(d/Rl)a = 18-8. Beginning with the data in 
tables 1 and 2 we have computed the quantity 

A = GlpCI;Ri = G(d/v)2/pR2R$ (27) 

and found the ratio A,/& as a function of R. Here A(, refers to the narrow gap 
meaaurernents. Values of m and m’ are compiled as before and the results are 
given in table 5.  We see that over the range 400 < R < 1200 a constant value of 
m = 0.35 will describe the data. Furthermore, the value of rn is not much changed 
from values in table 4 for smaller gap-width ratios. 

(a) Comparison of Wendt’s curves in figure 10 for gap widths 0-95 and 2.20 cm 

log R log &l& m m‘ 
2-5 0-148 0.36 0.33 
3.0 0-123 0-30 0.28 
3.5 0.121 0.30 0.27 
4-0 0.121 0.30 0.27 
4.5 0.121 0.30 0.27 

(a) Comparison of curves in figure 10 for gap widths 0.95 and 4.70 cm 

2.5 0.277 0.33 0.30 
3.0 0.212 0-26 0.23 
3.5 0.220 0.26 0-24 
4.0 0.224 0.27 0.24 
4.6 0-227 0.27 0.24 

TABLE 4 

R 
200 
300 
400 
500 
600 
700 
800 
900 

1000 
1100 
1200 

&In. 
0.271 
0.311 
0,342 
0.355 
0.343 
0.348 
0.353 
0.353 
0.357 
0-358 
0-357 

m 

0.45 
0.40 
0.37 
0.35 
0.36 
0.36 
0.35 
0.35 
0.37 
0.35 
0.35 

m’ 
0.36 
0-33 
0.30 
0.29 
0.30 
0.29 
0.29 
0.29 
0.29 
0.29 
0-29 

TABLE 5. Comparison of Donnelly’s meaaurements for gap widths 0.1 and 1.0 cm 

Taylor’s measurements are not as conclusive as the other experiments on this 
particular point. His curves extend to higher Reynolds numbers and are not 
always parallel. This can be seen in Fig. 10 of Taylor’s paper (1936) on which are 
plotted G/(pQ2,R2,Ri) us R for a series of 8 different inner cylinders. We have 
calculated values of A as in (27) for several of Taylor’s curves excluding the 
highest speeds. The results for m are summarized in table 6. We see that, up to 
log R = 4, the values of m are fairly constant and do not vary very much with 
change in gap width. An exception is seen in table 6c, where two wide gap cases 
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are compared and m is considerably lower. However, the curves lie so close that 
the error in this determination could be rather large. 

We conclude that (23) will represent approximately the data in the speed range 
considered. The value of m is about 0-32 f 0.05 and is not very sensitive to the 
ratio of gap widths being compared. Wendt's suggestion that (dRz/Rf)m' should 
replace (d/R,)m in (23) does not seem to lead to much improvement, as seen in 
tables 4-6. The results of this section are consistent with the relation (18) 
proposed by Batchelor, in which the value of m is 0.25. 

(a) Comparison of Taylor's measurements for gap widths 0.16 and 0.46 cm 

log R log &A& m m1 

3.1 0.166 0.34 0.31 
3.3 0.173 0.35 0.33 
3.5 0.173 0.35 0.33 
3.7 0.180 0.37 0.34 
3.8 0.184 0.37 0-35 

(b)  Comparison for gap widths 0.16 and 0.85 c m  

3.3 0.262 0.32 0.29 
3.5 0.255 0.31 0.28 
3-7 0.266 0-33 0.30 
3.8 0-272 0-34 0.30 

(c) Comparison for gap widths 0.60 and 0.85 em 

3.3 0.048 0.26 0.22 
3.5 0.038 0-21 0.18 
3.8 0.041 0.22 0.19 
4.0 0.042 0.23 0.19 

TABLE 6 

7. Conclusions 
We have analysed the results of a number of measurements of the torque 

transmitted to an outer cylinder as a function of the angular velocity of the inner 
cylinder. The results show that the analysis of Stuart (1958) gives the correct 
variation of torque for a short range above the critical speed. With one exception 
(figure 5) we find that the functional form 

G = aQil+bQT ($ < n < #) 

describes the measurements over a range of about ten times the critical velocity. 
Details of the range of validity of this equation are given in table 3. The exponent n 
is not sensitive to the width of the gap between cylinders. A good compromise 
value appears to be n = 1-36 for the range indicated in table 3 and n = 1.5 at 
higher speeds. When measurements are pushed far enough the empirical relation 
breaks down. 

For speeds well beyond critical it is possible also to describe the variation of 
torque with gap by G/(phQfRP) oc R-l(d/R,)m, 

where 1 = 2 - n + 0.5 and m li. 0.3 1. This is in fair agreement with the formula (1  8) 
obtained by Batchelor (see the appendix). 
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Appendix 
A theoretical model of the$ow at speeds far  above the critical 

B y  G. K .  Batchelor (University of Cambridge) 

After Dr Donnelly and Miss Simon had prepared their paper for publication, 
I noticed that the empirical relation between torque G and angular velocity SZ,  at 
speeds well above the critical (viz. that GCC SZF where n is about 1.5) is in accord 
with a prediction based on a simple theoretical model of the flow. This theoretical 
model also gives a prediction of the dependence of Q on the size of the gap between 
the cylinders at speeds well above the critical; and it seems from further analysis 
of the available data by Donnelly and Simon, now incorporated in the paper, 
that the theoretical and observed relationships are again in fair agreement. I t  
therefore seems worthwhile to record here the basis of the theoretical results. 

It is supposed, first, that the flow between the two cylinders is steady, even 
though the angular velocity of the inner cylinder is far above the critical value. 
This steady flow will presumably have a cellular form, with the same axial wave- 
length as at speeds just above the critical although certainly not with the same 
velocity distribution, and the streamlines will lie on closed surfaces of revolution. 
When the angular velocity Q, is large enough, the Reynolds number of the motion 
in an axial plane will be large compared with unity, and the whole flow will consist 
of regions in which viscous forces are negligible and thin layers in which viscous 
forces are significant. The distribution of vorticity in the inviscid core of flow 
systems of this kind has been investigated (Batchelor 1956), but no use of the 
detailed form of the velocity or vorticity distributions will be made here. For the 
present purpose (which is to predict the functional dependence of torque on 
angular velocity SZ ,  and gap d, without bothering about the numerical value of 
constants of proportionality) it is sufficient to assume a flow in the axial plane of 
the kind sketched in figure 11. In  this figure Srepresents the general magnitude of 
the thickness of the boundary layer round the outside of the inviscid core of one 
cell, and we shall write v for the velocity (in the axial plane) at  the outer edge of 
this inviscid core. 

We now estimate S and v in terms of d and 0,. One relation is obtained by 
assuming the usual parabolic growth of a boundary layer with distance. The 
boundary layer under discussion is closed, and its thickness increases over part of 
its length and decreases over the remainder (the decrease occurring because the 
centrifugal force accelerates the fluid in the boundary layer over the horizontal 
parts of its length), but the general magnitude of the thickness will presumably be 
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the same as if the layer had increased in thickness over a path of length of order 
d under the action of an external stream velocity of order v. Thus we have 

A second relation follows from the balance in the boundary layer between the 
driving centrifugal force and the retarding viscous force. Fluid very close to the 
inner cylinder is acted on by centrifugal force Q?R,, whereas fluid close to the 
stationary outer cylinder is subject to no centrifugal force. The general magnitude 

R = R, R = O  

FIGURE 11. Sketch of the flow (in an axial plane) assumed in the theoretical argument. 
The lightly shaded area represents the boundary layer region in which viscous forces me 
significant. 

of the centrifugal force acting on fluid throughout the boundary layer is thus 
Q2, R,, whereas that of the viscous force per unit mass, in the direction of flow in 
the axial plane, is v v / P .  Hence 

Q?R, N vV/6'. (A 2) 

v N Q2,(dR1)&, 6 N dW/Q$Rf. (A 3) 

The relations (A 1) and (A 2) together give 

The corresponding Reynolds number of the axial boundary-layer flow is thus 

27 
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and this is the number which must be large compared with unity for the analysis 
to be applicable. This requirement was certainly satisfied in some of the experi- 
ments described in the paper; for instance, in Donnelly's (1968) experiments with 
the smaller of his two inner cylinders, d/Rl  = 1.0 and the Reynolds number 
RIRld/v ranged up to about 2000. 

The torque G acting on a length h of the inner cylinder can now bedetermined 
from the fact that the azimuthal velocity of the fluid drops from RIRl at the 
cylinder to some value representative of the core conditions in a distance 6. The 
distribution of angular velocity R in the inviscid core is such (Batchelor 1956) as 
to  make the circulation about the inner cylinder uniform (i.e. RK r-2) and equal 
to some value intermediate between 2nQ, R2, and zero, so that R must change by 
an appreciable fraction of its value across the boundary layer. Hence 

G - hR: x viscous stress at cylinder 

which is the relation (18) quoted in the paper. It is to be noted that this relation is 
an asymptotic one, holding more closely as the Reynolds number of the flow 
increases. It seems reasonable to infer, from the agreement between (A4) and 
some of the observations discussed in the paper, that a flow of the type sketched 
in figure 11 does in fact occur under the conditions of these same observations. 
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